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ABSTRACT 
There exists a non-Dunford-Pettis operator from L ~ into a Banach lattice E 
that does not contain a copy of co or L ~. This problem is related to 
regularisation properties of convolution operators on L 1. 

1. Introduction 

H. P. Rosenthal proved that the "convolution by a biased coin" operator 
from L 1 into L 1 does not fix a copy o fL  1 and fails the Dunford-Pettis property 

[4]. It is thus a natural question, raised by N. Ghoussoub (private communica- 

tion), whether this can be improved by finding a non-Dunford-Pettis operator 
from L 1 into a Banach lattice E that does not contain Co or L i. Observe that E 
must fail the Radon-Nikodym property, thus also improving an example of 
the author [5]. This problem is arguably not of  the utmost importance. 

However, the natural approach raises more central problems, to be presently 

explained. 

For - I < a < 1, denote by/za the probability measure 

on the group { -  1, 1}N; thus/za *12 b = llab. Denote L 1 =  L~({ -  1, 1 }N, P-O), and 
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denote by Ta the "convolution by a biased coin" operator f----/ta * f o n  L ~. If r, 

denotes the nth coordinate function on { - I, 1} N, Ta(r,)= ar,, so that, for 

a ÷ 0, Ta fails the Dunford-Pettis property, since it does not send the weakly 

convergent sequence (r,) to a norm-convergence sequence. Since, as shown by 

Rosenthal, Ta does not fix a copy of L 1, the natural approach to Ghoussoub's 

problem is to try to factor Ta : L 1 ~ L ~ through a Banach lattice E that does not 
contain L ~. It has been shown by N. Kalton [2] that when a Banach lattice E of 

measurable functions contains a copy of  L 1, there exists a lattice isomorphism 

T of L l onto a sublattice of E. Then it is easily seen that if a is small enough 

that I (T(1) > a} I > 0, for each n there exists 0 < k < 2" such that 

2" I {T(2" ltk2-..{k+,)2-. 1) >= 2"oe} l > I{T1 >_ o~}1, 

where I A I = go(A). 
Thus, a very natural way to ensure that E does not contain a copy o fL  I is to 

require that 

lim t s u p { l ( f  > _ t } l ; fUE,  II f i l e  ~ 1) = 0. 

Since E has to contain the function Tafwhenever II f Ill ~ 1, one is led to the 
following: 

PROBLEM 1. IS it true that, for a ~: 1, - 1, 

(1) limtsupft(Tj>t}l;f~Lt, f >0, II f l l ,  _5 1} =0? 
l ~ o o  

In fact, by looking at examples, one is led to the following question: 

PROBLEM 2. IS it true that for a :# 1, - 1, there exists a constant K = K(a) 
such that 

VfEL', Ilfll,~ 1, '¢t >=2, I { T ~ f ~ t } l  <=K(a)t-'(logt)-~'2? 

It is a well-known fact that Ta is a "regularizing" operator. In particular, we 

have the hyper-contractivity property, for q > p > 1, 

> ~ -  1 
(2) a = V p  ] ~ II Tafllq <-- I l f l lp  V f  ~Lp .  

This does not tell us anything about the action of  T on LI; (1) would be a 

statement about the regularizing properties of  T on L'.  Unfortunately, the 
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condi t ion of  (1) is very much "non-convex" and the available machinery seems 

powerless to attack that question. 

Being unable to answer either Problem 1 or Problem 2, we will turn towards 

the operator  T = ~ T~-,du. 

THEOREM 1. We have 

(3) l i m t s u p { l { T f > t } l ; f ~ L l ,  f > O ,  I l f l l l  =< 1} = 0 .  
t~Zt; 

Actually, our p roof  shows that for t large enough and f E L I ,  II f I11 ~ 1, we 

have 

I { T f  > t } I < K(log log t)/t log t where K is a number.  

We have no reason to think this is sharp; the actual estimate is irrelevent for 

our purpose,  and only (3) will be used for the p roof  o f  the following that 

answers Ghoussoub ' s  question. 

THEOREM 2. The operator T:  L 1 ..., L 1 fails the Dunford-Pett is  property, 

but factors through a Banach lattice E that does not contain Co or L I. 

2. Proof of Theorem 1 

Consider  f E L  1, II f i l l  --< 1, f >  0, t > 1. We set h = Sire Te- . ( f )du where 
N >_- 1 will be specified later. Since Ta is o f  norm one from L ~ to L I, we have 

II h II1 --< 1/N. Let  V = Te-" .  The formula To o Tb = Tab yields T ( f )  = 
Z~.~ 1 W(h) .  For 0 < i < N - 1, we set g' = min(V~(h), t). We set u ° = gO, and 

for 1 _<- i < N - 1, we set u ~ = gi _ V(g~- 1). 

L~MMA 1. Z0_<,<_~-, II U' II1 ~ II h II1 ~ 1/N. 

PROOF. We have g ~ =  V(g ~-1) + u i, so that V~-~- l (g  ~) = V~-~(g ~-1) + 

VN-~-I(u~). By summat ion  of  these equalities for l < i < N - 1, we get 

N - I  N - I  
gN-1..~ VN-I(gO)+ ~ vN-i-I(ui)= ~ VN-i-I(ui). 

i-I i-o 

We observe that S V ~ - ' - I ( u ' ) d ~  = II u '  Ill, 
II v~'-I(h) II, ~ II h I!1 ~ 1/N. 

Set U = { T ( f )  >_- t}. Since T ( f )  = Zff.~ 1 W(h) ,  we have 

U C gi > t = u° + ~ (ui + V ( g i - l ) ) >  t • 
i- i-O 

and that II g"- '  II, =< 
El 
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By integrat ion over U, we get 

N - l  

(4) tl UI _-< 
i = 0  

Let n o w p  = 1 + e-Ira,  q = 1 

by (2), II V(f ) I1~ --<- II f l ip  for 

Now 

N-,f  II u' II, + ~ V(g'-')d~o. 
i - O  

+ e l/N, so that  e ~/N = x / (q  - 1)/(p - 1). Hence,  

all f E  L p. F r o m  (4) and L e m m a  1, we get 

1 N - 1  

t l u I  <-_-+ E 
g i-i 

II g ' - '  II, --< 

I uI '-l'¢ II V(g'- ')II~ 

1 N - l  

--<- + X I u I I- ''~ II g,-, II,. 
g i--I 

II g i - ,  IIl:" II g ' - '  ,~ I I - '/p = < N - ' / p t ' -  '/p 

1 1 e uN --  1 1 

p q e ~N + 1 4 N  

t lU[  < 81U [ I/4N ~ 8 [ U  [t lut/16~ 161U[ tlvl/16. 

We now set y = t[ UI /16  < 1/16. H e n c e y  < ( 1 6 y / t )  r < ( 1 / t ) Y ,  s o t h a t l o g y  < 

y log (1 / t ) ,  i.e., y l o g t  < l o g ( I / y ) .  It follows easily that  for t large enough,  
y < c(log log t)/log t, i.e., I U[ < c log log t / t  log t, where c is a universal  
constant .  [] 

and  so 

Since N > 2, we have 

Thus  we obtain 

t l UI < I / N  + ( N t ) t - ' / P I U I  ~-'/q 

Suppose now that  N is the smallest integer with N > 2/ t  I U I. Thus  I / N  < 

t[ U 1~2, and thus 

t lU[ < 2 ( N t ) ' - ' / P I U I I - ' / q .  

Since t I U I < 1, we have N < 4/ t  [ U l, and  thus 

t l U l < 2 (  4 ~ 1-':p Ull /p_, / ,  = \ - ~ ]  [U[ I-t/q ~ 8[ . 
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3. Proof of Theorem 2 

We first give some notations. Let 

~ = ( g ~ L t ;  Ilgll,__<2 -k, 3 f C L ' ,  Ilfll,<=2k, O<=g<=T(Ifl)}. 

Let 

c g , = { g =  ~ akgk;Otk>_~O, ~ Otk.<l,gk~C~k}. 
k>__l k>l 

We observe that if g = Y,l~ atgt where gtE (6~k(I), w e  have gU(El~.~al)~g '. 
Finally, let 

~ =  {hEL~; 3(hn), hnE~' ,O<=h =<liminfh~}. 

We observe that cgk, hence ~' ,  hence ~ are convex. Moreover II g I1~ -- 1 for 

g E cg,, hence for g ~ cg. It is simple to see that we can define a Banach lattice E 

such that ~ is the positive unit ball of  E, i.e., 

g = ( f ~ L ~ ;  32 > 0 ,  Ifl E 2 ~ } ,  

the norm o f f  being the infimum of such 2's. Since [Ig II, ---- 1 for g ~ ~,  we 

have Ilftlt =< Ilflle. On the other hand, the definition of  q shows that 
T(L~) c E, and that T: L l ~  E is of  norm < 1. This shows that E factors 

through L ~. 
The proof that E does not contain Co will use the following lemmas. 

LEMMA 2. Let h ~ cg. Then there exists a sequence (ilk), l k  ~ O, Zk > l flk ~-~ 
l, and g,,k E (~k such that 

h _-< lim inf ~ i~gn,k. 
n k_>l 

PROOF. By definition of ~,  we can find a sequence h~ E ~ '  such that 

h < l i m i n f ~ h n .  By definition of ~' ,  h,,=~,k~a,,,kg,,.k where an.k>0,  

~'k~ a,,,k <= 1, g,,,kE qgk. There is no loss of generality to assume that tk  = 
l i m ~  a~,k exists, and that moreover Ilk -- a,,,kl < 2 -2k for n > k. We have 

Ek>lf l  k ~_< 1. Set h" = ~k<nflkgn,k . Thus we get 

I l h n - h ; l l , -  -< Y, ltk-,~,~l IIg,,~ll,+ ~ ~,kllg~,kll, 
k<n k>n 

< n 2  -~ + 2  -~ = ( n  + 1)2 -~. 

It follows that liml hn - h~ I = 0 a.e., and that h < lim infn h~. [] 
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LEMMA 3. The norm o f  E is order continuous; that is, i f  for  a sequence 

hi > h2 > ." • >-_ 0 such the inf. h. = 0, we have l i m . ~  l[ h. lIE = 0. 

PROOF. By definition of  E,  it is clear that inf. h. - - 0 ~ E  means that 
infn h. = 0 pointwise a.e. In particular I] h. [Iz ~ 0. We can and do assume 

that II hi ]IE < 1. From Lemma  2, there exists a sequence flk > 0, Y'k=>l flk < 1, 
and g.,k E c$ k such that 

h i < lim inf  Y~ flkg.,k. 
n k > l  

To conclude the proof, it is sufficient to show that if  0 < h < hi and II h II1 
2 - 2q, we have 

II h I1~ ---- % :--- 4q2 -q12 2ff X t~k • 
k>q 

So we have to show that h E aq (~. Set 

= min [h,  Un \ Y, flkg~,k). 
k>=i 

Since h < lim infn un, by definition of  ~g it is enough to show that for each n we 

have un ~aq  c~,. Since un < h, we have II u~ II1_- < _ 2-2q. Since u~ <= Xk>=lflkg~,k, 
we can write u~ = Xk>_l flkg'~,k where g'~,k < g~,k. For k < q denote by Sk the 
largest integer such that II g',k II1 ---< 2 -2~,-k. Since g~,k E Oak, we have Sk > O. 

Since II flkg~,k II1 =< II U~ II1 =< 2 - ~ ,  we have 

2--2Sk--k ~ 4 II g',~ II1 < ° - 1 2 - 2 q + 2  ~ - / a  k 

so that 
fig2 -~ < fll/22 -sk <= 2 k/2-q+2. 

We have l] 2s'"'6n,k II1 = < 2-sk-k; the definition of  (~k  shows that 2*kgn.k E '  ~k+sk. 
We have 

u = X (#k2-sk)(2"g~'.k)+ Y, /~kg~,k. 
k'<q k>q 

This shows that u E a ~g', where 

a =  Y~ ( f l ,2 - s0+  ~ fig--< ~ 2k/E-q+2+ Y. fl, <aq. [] 
k<=q k>q k<=q k>q 

PROPOSITION 1. X contains no subspace isomorphic to Co. 

In view of  [3], Theorem 1.c.4 it suffices to show that every norm-bounded  
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increasing sequence h, has a limit in norm. In view of Lemma 3, it suffices to 

show that if h, E ~ is an increasing sequence, then h = sup h, E ~.  By 

definition of ~,  for each n we can find g, E ~ '  such that II (h .  - g . )  + II, --< 2 -". 
It follows easily that h < lim inf._a g,, so that h E ~.  [] 

To complete the proof of Theorem 2, it remains to show that E contains no 

copy o fL  i. As already explained, in view of the results of  [2], it suffices to show 

that 

lira t sup I { g > t } 1 = 0 
t~oo g ~  

or even 

(5) lim t sup I{g >= t}l = 0. 
t--oo gEt~ ' 

For g ~ cg, we have g = Z flkgk where Z flk < l, gk E ~gk. By definition of ~k, 

for each q we have g < T(gl)  + g2 where II g, I[~ --< 2q and I[ g2 I11 --< 2 t .  Since 

{g >_- t} c { T ( g 0 ~  t /2} + {g2>-- t /2},  

we have 

t l { g  > t}l < t s u p ( l { T ( f ) > 2 q + ' t } l :  II f l l ,  --< 1} + 2 -q+~ 

so that (5) follows from Theorem 1. The proof is complete. 
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