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ABSTRACT

There exists a non-Dunford—-Pettis operator from L' into a Banach lattice E
that does not contain a copy of ¢, or L'. This problem is related to
regularisation properties of convolution operators on L'.

1. Introduction

H. P. Rosenthal proved that the “convolution by a biased coin” operator
from L' into L' does not fix a copy of L' and fails the Dunford-Pettis property
[4]. It is thus a natural question, raised by N. Ghoussoub (private communica-
tion), whether this can be improved by finding a non-Dunford-Pettis operator
from L' into a Banach lattice E that does not contain ¢, or L'. Observe that E
must fail the Radon-Nikodym property, thus also improving an example of
the author [5]). This problem is arguably not of the utmost importance.
However, the natural approach raises more central problems, to be presently
explained.

For — 1 <a = 1, denote by y, the probability measure

(el

on the group { — 1, 1}™; thus g, * 1, = u,,. Denote L' = L'({ — 1, 1}N, u), and
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denote by T, the “convolution by a biased coin” operator f—u, * fon L'. If r,
denotes the nth coordinate function on { — 1, 1}N, T,(r,) = ar,, so that, for
a # 0, T, fails the Dunford—Pettis property, since it does not send the weakly
convergent sequence (r,) to a norm-convergence sequence. Since, as shown by
Rosenthal, T, does not fix a copy of L', the natural approach to Ghoussoub’s
problem is to try to factor T, : L' — L' through a Banach lattice E that does not
contain L', It has been shown by N. Kalton [2] that when a Banach lattice E of
measurable functions contains a copy of L, there exists a lattice isomorphism
T of L' onto a sublattice of E. Then it is easily seen that if « is small enough
that | {T(1) = a}| >0, for each n there exists 0 = k < 2" such that

2"{TQ2" lpa s 1) 2 2"} | > {T1 2 a} |,

where |4 | = uyfA4).
Thus, a very natural way to ensure that E does not contain a copy of L' is to
require that

Eimtsup{l(fgt}l;feE, I fle=1}=0.
Since E has to contain the function T, f whenever || ||, = 1, one is led to the
following:
ProBLEM 1. Isit truethat, fora #1,—1,

(1) lim tsup{|{TofZ 1} s SELY, f20, | [ =1} =07

In fact, by looking at examples, one is led to the following question:

PrOBLEM 2. Isittruethatfora # 1, — 1, there exists a constant K = K(a)
such that

ViEL, |fIh=1, V22, |{T.fzt}| <K} '(logt)~"

It is a well-known fact that T, is a “regularizing” operator. In particular, we
have the hyper-contractivity property, forg = p > 1,

g—1
(2) az ;—_l = ” Taf"q = "f"p VfEL”.

This does not tell us anything about the action of T on L'; (1) would be a
statement about the regularizing properties of T on L'. Unfortunately, the
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condition of (1) is very much “non-convex” and the available machinery seems
powerless to attack that question.

Being unable to answer either Problem 1 or Problem 2, we will turn towards
the operator T = (5 T,-~du.

THEOREM 1. We have

3) lim £ sup([{Tf Z 1}1; FELL, £>0, || f}, £ 1} =0.

Actually, our proof shows that for ¢ large enough and fEL!, || f||, = 1, we
have
H{Tfzt}) =K(loglogt)/tlogt  where K is a number.

We have no reason to think this is sharp; the actual estimate is irrelevent for
our purpose, and only (3) will be used for the proof of the following that
answers Ghoussoub’s question.

THEOREM 2. The operator T: L'— L' fails the Dunford-Pettis property,
but factors through a Banach lattice E that does not contain ¢, or L.

2. Proof of Theorem 1

Consider fEL!, || f|1 =1, =0, t = 1. We set h = [§’" T,-«(f)du where
N = 1 will be specified later. Since T, is of norm one from L' to L', we have
Ihl,=1/N. Let V=T, w. The formula T,oT,=T,, yields T(f)=
SN Vi(h).ForO0<i <N —1,wesetg =min(V'(h), ). Weset u®=g° and
for1<is=N-—1,wesetu' =g —V(g'™).

LEMMA 1. Zogan W S AL S VUN.
Proor. We have g' = V(g'~") +u’, so that V¥~ ~(g)y=VV"{(g'")+

V¥-i=1(y"). By summation of these equalities for | =i =N — 1, we get

N-1 N—-1
gN—l___VN—l(g0)+ 2 VN—i~1(ui)= 2 V”““(u‘).

i=] i=0

We observe that [ V¥~'~'(u')duy= ||u'|l;, and that 1g* =" |, =
VP h) i< | A S UN. u

Set U = {T(f) = t}. Since T(f) = Z}5;' Vi(h), we have

N-1 ) N-1 . .
Uc { 2 g‘ét}={u°+ Y (u’+V(g"'));t}.

i=0 i=0
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By integration over U, we get
N-1

N-1
4 U2 2w+ 2 , V(& D,

i=0 i=0

Letnowp=1+e""¥, g=1+ " sothat e’’ = /(g — 1)/(p — 1). Hence,
by (), || V(N ll, = || £]I, for all fEL?. From (4) and Lemma 1, we get

1 NI .
tU| =5t -21 U VgD,
N-—

| 1 .
— 4+ 1-1/q i—1 .
N El [U| e,

=
Now
" gi—l "p é " gi_l "l”p " gi—l "lm—!/péN—l/ptl—llp.
Thus we obtain
tHHU| S 1/N+(Ne)t=Ve | U=,

Suppose now that N is the smallest integer with N = 2/¢t|U|. Thus I/N =
t|U|/2, and thus

tlU| S2(Ne)!-ve | U -1,

Since t|U| =1, we have N =4/t|U|, and thus

4 \1-Up
tlUIéz(l—U_l-) |UJ'-Ya < 8|U|VeP-Ya,

Since N = 2, we have

and so
tlU' =< 8| U|1/4N§ 8| le]Ul/lG; 16| Ul”Ul“s.

Wenowsety =¢|U|/16 = 1/16. Hence y = (16y/t)” =(1/t)?,so thatlogy =<
ylog(1/t), i.e., ylogt =log(1/y). It follows easily that for ¢ large enough,
y=c(loglogt)logt, ie., |U|=cloglogt/tlogt, where ¢ is a universal
constant. a
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3. Proof of Theorem 2

We first give some notations. Let
6.=(g€E€LY |lgh=27% 3fCL), | f],s250=g=T(If))

Let
(g’={g= Y ugarz0, ¥ ay=1,8€E (gk}-
kz1 kz1
We observe that if g =Z,>, a)g, where g,€ €, we have gE(Z,>, o) %"
Finally, let

€={heL";, A(h,), h,E€',0=h =liminfh,}.

We observe that 6, hence €’, hence € are convex. Moreover || g ||, = 1 for
g € €', hence for g € €. It is simple to see that we can define a Banach lattice E
such that € is the positive unit ball of E, i.e.,

E={f€L% 31>0,|f|€AE),

the norm of f being the infimum of such A’s. Since || g ||, =1 for gE €, we
have || flli= || flle- On the other hand, the definition of ¢ shows that
T(L")YCE, and that T: L'—E is of norm = 1. This shows that E factors
through L'.

The proof that E does not contain ¢, will use the following lemmas.

LEMMA 2. Let h€ €. Then there exists a sequence (f), B Z 0, Zy 5, B =
1, and g, x € €, such that

h =liminf 3 Bigus.

n kzl

PrOOF. By definition of €, we can find a sequence 4, E €’ such that
h =liminf, h,. By definition of €', h,=Z;,  a,8,x Where a,; =0,
Ziz19k =1, 8,4, € 6,. There is no loss of generality to assume that §;, =
lim, ., &, exists, and that moreover |8, —a, | <2 ~*for n = k. We have
Zez1 B = 1. Set hy, = 2y <, Bi&nix. Thus we get

" hn - hrlx "l = 2 lﬂk - an,kl " 8n.k "l+ 2 Xy k “ gn,k "l
k=n k>n

=n2"+2""=(n+ 127"

It follows that lim| A, — A% | = 0 a.e., and that A =<lim inf, A}. O
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LEMMA 3. The norm of E is order continuous; that is, if for a sequence
hyZ hyZ - -+ =0 such the inf, h, =0, we have lim, ., | h, || =O.

ProOF. By definition of E, it is clear that inf, h, = 0EE means that
inf, #, = 0 pointwise a.e. In particular ]| 4, ||, —~0. We can and do assume
that || &, ||z < 1. From Lemma 2, there exists a sequence f, = 0, Z,», f, =1,
and g, ; € €, such that

hl é llm lnf 2 ﬂkgn,k'
n kz1
To conclude the proof, it is sufficient to show thatif 0 =h <h,and || k|, =
27 %, we have
Ihlle=a;:=4927"+ % B

k>q

So we have to show that h Ea, 6. Set

u, = min <h, kgl ,Bkg,,,k> .
Since # = lim inf,, u,, by definition of € it is enough to show that for each n we
have u, €a, ¥’ Since u, = h, we have || u, ||, =2 %. Since u, = Zi > P&
we can write u, = 2y, B &« Where g5 = 8,4 For k = g denote by s, the
largest integer such that || g, |, =2 > *. Since g, € %\, we have s, = 0.
Since || Bigni 11 = ||t ||y =2 7%, we have

27k =4 g | =27,
so that
,BkZQS" §ﬁ’:/22—sk =< 2k/2—q+2.

We have || 2%g;, ||; =2 ~%; the definition of €, shows that 2%g} , € €, ..
We have

U=y (B2 7)2% i)+ 2 B&ni-

k=q k>g
This shows that u €a€¢’, where

a=3 B2+ T B= T 2M 021 ¥ B <a, 0

k=q k>gq k=q k>q
PROPOSITION 1. X contains no subspace isomorphic to c,.

In view of [3], Theorem 1.c.4 it suffices to show that every norm-bounded
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increasing sequence 4, has a limit in norm. In view of Lemma 3, it suffices to
show that if h,€ % is an increasing sequence, then s =sup h,€ 4. By
definition of ¥, for each n we can find g, € ¢’ such that || (h, —g,) " |, =27".
It follows easily that # <lim inf,_, g,, so that hE €. O

To complete the proof of Theorem 2, it remains to show that E contains no
copy of L'. As already explained, in view of the results of [2], it suffices to show
that

lim¢sup [{g=t}| =0

t—~w gEE€

or even

(5) limtsup |[{g=t}|=0.
t—o gEE

For g € €’ we have g = Z B, g, where Z B, = 1, g, € €. By definition of €,
for each g we have g < T(g,) + g, where || g |, =2%and || g ||, =277. Since

{g=t}C{T(g) =12} + {8 = t/2),
we have
ti{gzt}| Sesup{|{T(NHz 2} | flL =1} + 279!

so that (5) follows from Theorem 1. The proof is complete.
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